If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49h^2-4=0
a = 49; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·49·(-4)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*49}=\frac{-28}{98} =-2/7 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*49}=\frac{28}{98} =2/7 $
| 12(v+4)-4v=4(2v+2)-10 | | s/6-52=-45 | | –|r+2|=51 | | 6(f+1.25=10 | | 3*(n+2)=30 | | 58=3t-23 | | 234/10*3-x=750 | | 5(w-82)=30 | | 54-n=3*8 | | -10x+3(x-3)+6x=7x-81 | | 3+n+12=30-5 | | h/4− 1=3 | | -2x+4x-14=2(x-2)-32 | | 3*x-6=30 | | 30-11x=-25 | | k+16/4=5 | | 600*x/3+23=683 | | 20-16=2(x-1) | | x-4/3=5+x/2 | | 10=(f+11/4)6 | | (x-3)(x+2)=(x+5)(x-1) | | 72+5y-26=16y-10-3y | | -243=19(10+w) | | 6(1/14+f)=10 | | 6(f+11/4)=10 | | -476=p-622 | | g+15=77 | | 4)8x+7+3(4x+5)=2x+184 | | m-83=248 | | 6x-2(3-4x)=4(x-3)-34 | | 2t-13=-4 | | 5(n-1)=60 |